Shifted Schur Process and Asymptotics of Large Random Strict Plane Partitions
نویسندگان
چکیده
In this paper we define the shifted Schur process as a measure on sequences of strict partitions. This process is a generalization of the shifted Schur measure introduced in [TW] and [Mat] and is a shifted version of the Schur process introduced in [OR1]. We prove that the shifted Schur process defines a Pfaffian point process. We further apply this fact to compute the bulk scaling limit of the correlation functions for a measure on strict plane partitions which is an analog of the uniform measure on ordinary plane partitions. As a byproduct, we obtain a shifted analog of the famous MacMahon’s formula.
منابع مشابه
Correlation functions of the shifted Schur measure
The shifted Schur measure introduced in [TW2] is a measure on the set of all strict partitions λ = (λ1 > λ2 > · · · > λl > 0), which is defined by Schur Q-functions. The main aim of this paper is to calculate the correlation function of this measure, which is given by a pfaffian. As an application, we prove that a limit distribution of λj ’s with respect to a shifted version of the Plancherel m...
متن کاملTableaux and plane partitions of truncated shapes ( extended abstract )
We consider a new kind of straight and shifted plane partitions/Young tableaux — ones whose diagrams are no longer of partition shape, but rather Young diagrams with boxes erased from their upper right ends. We find formulas for the number of standard tableaux in certain cases, namely a shifted staircase without the box in its upper right corner, i.e. truncated by a box, a rectangle truncated b...
متن کاملPerfect sampling algorithm for Schur processes
We describe random generation algorithms for a large class of random combinatorial objects called Schur processes, which are sequences of random (integer) partitions subject to certain interlacing conditions. This class contains several fundamental combinatorial objects as special cases, such as plane partitions, tilings of Aztec diamonds, pyramid partitions and more generally steep domino tili...
متن کاملRandom Walks on Strict Partitions
We consider a certain sequence of random walks. The state space of the nth random walk is the set of all strict partitions of n (that is, partitions without equal parts). We prove that, as n goes to infinity, these random walks converge to a continuous-time Markov process. The state space of this process is the infinite-dimensional simplex consisting of all nonincreasing infinite sequences of n...
متن کاملThe Gaussian free field and strict plane partitions
We study height fluctuations around the limit shape of a measure on strict plane partitions. It was shown in our earlier work that this measure is a Pfaffian process. We show that the height fluctuations converge to a pullback of the Green’s function for the Laplace operator with Dirichlet boundary conditions on the first quadrant. We use a Pfaffian formula for higher moments to show that the h...
متن کامل